SIAM Homepage | Search Catalog | New Books | Author Index | Series Index | Title Index | View My Shopping Cart

The catalog and shopping cart are hosted for SIAM by EasyCart. Your transaction is secure. If you have any questions about your order, contact

Purchase Now!

Bioterrorism: Mathematical Modeling Applications in Homeland SecurityBioterrorism: Mathematical Modeling Applications in Homeland Security

H. T. Banks and C. Castillo-Chavez, Editors

Frontiers in Applied Mathematics 28

Globalization and the possibility of bioterrorist acts have highlighted the pressing need for the development of theoretical and practical mathematical frameworks that may be useful in our systemic efforts to anticipate, prevent, and respond to acts of destabilization.

Bioterrorism: Mathematical Modeling Applications in Homeland Security collects the detailed contributions of selected groups of experts from the fields of biostatistics, control theory, epidemiology, and mathematical biology who have engaged in the development of frameworks, models, and mathematical methods needed to address some of the pressing challenges posed by acts of terror. The ten chapters of this volume touch on a large range of issues in the subfields of biosurveillance, agroterrorism, bioterror response logistics, deliberate release of biological agents, impact assessment, and the spread of fanatic behaviors.


This volume will be of interest particularly to those specializing in the biological sciences including biophysics, biomedical engineering, and biomathematics, but its applications extend to readers with an interest in control and systems theory, dynamical systems, inverse problems, discrete math, statistics, computational science, and, of course, simulation and modeling. Readers will find contributions driven by modeling and system interrogation in the presence of uncertainty; identification of response strategies that minimize the impact associated with the potential deliberate release of biological agents in diverse topologies; the use of epidemiological approaches to model the spread of fanatic ideologies; the development of mathematical and statistical approaches that can help in the building of biological and epidemiological “sensors;” and models for the spread of disease that include mobile or transient populations with applications to influenza and smallpox.

Naturally, only selected views on the use of mathematical and computational approaches in homeland security are provided. It is the hope of the editors that the detailed contributions found here will inspire and promote additional research at the interface of homeland security and the mathematical sciences.


Preface; Chapter 1: Challenges for Discrete Mathematics and Theoretical Computer Science in the
Defense against Bioterrorism, Fred S. Roberts; Chapter 2: Worst-Case Scenarios and Epidemics, Gerardo Chowell and Carlos Castillo-Chavez; Chapter 3: Chemical and Biological Sensing: Modeling and Analysis from the Real World, Ira B. Schwartz, Lora Billings, David Holt, Anne W. Kusterbeck, and Ioana Triandaf; Chapter 4: The Distribution of Interpoint Distances, Marco Bonetti, Laura Forsberg, Al Ozonoff, and Marcello Pagano; Chapter 5: Epidemiologic Information for Modeling Foot-and-Mouth Disease, Thomas W. Bates, Mark C. Thurmond, and Tim E. Carpenter; Chapter 6: Modeling and Imaging Techniques with Potential for Application in Bioterrorism, H. T. Banks, David Bortz, Gabriella Pinter, and Laura Potter; Chapter 7: Models for the Transmission Dynamics of Fanatic Behaviors, Carlos Castillo-Chavez and Baojun Song; Chapter 8: An Epidemic Model with Virtual Mass Transportation: The Case of Smallpox in a Large City, Carlos Castillo-Chavez, Baojun Song, and Juan Zhang; Chapter 9: The Role of Migration and Contact Distributions in Epidemic Spread, K. P. Hadeler; Chapter 10: Modeling the Spread of Influenza among Cities, James M. Hyman and Tara LaForce; Index.

2003 / x + 240 pages / Softcover / ISBN-13: 978-0-898715-49-1 / ISBN-10: 0-89871-549-0 /
List Price $100.00 / SIAM Member Price $70.00 / Order Code FR28
Quantity desired

Search our catalog for:

Shopping cart provided by:
Select quantity and list or member price and then click the "Click to Order" button to add books to your shopping cart.
Banner art adapted from a figure by Hinke M. Osinga and Bernd Krauskopf (University of Auckland, NZ.)